Контроллеры для управления асинхронным двигателем

Способы управления асинхронным двигателем

Электропривод сегодня является основой большинства подъемно-транспортных, обрабатывающих комплексов. Одним из способов их плавной работы является векторное управление асинхронным двигателем, преобразующим электрическую энергию в механическую – вращение приводного вала и связанных с ним механизмов.

Что такое асинхронный двигатель?

Прежде чем переходить к модели, алгоритмам и системам управления электроприводом, нужно точно знать, что он собой представляет. Это позволяет выявить в его цепи такие моменты, которые можно будет использовать для организации плавного изменения ключевых характеристик (частота/скорость вращения, напряжение). Соответственно, можно определить параметры контроллера, разработать технологические карты для его размещения в шкафу и обслуживания.

Работа любого асинхронного двигателя базируется на возбуждении на контактных обмотках магнитного поля при подаче электричества от шкафа управления. Оно возникает на статоре – неподвижной части двигателя, которая состоит из кольцевого сердечника (магнитопровода), собранного из отдельных металлических пластин. Каждая из них имеет концентрические пазы на внутренней стороне кольца, которые при совмещении образуют продольные пазы. Они служат для намотки проволоки, составляющей основу статорной обмотки.

asinhronnyj trehfaznyj dvigatel

Также асинхронный двигатель имеет подвижную часть – ротор, совмещенный с приводным валом. Он также имеет пластинчатый сердечник с пазами, но уже на внешней стороне. Вместо проволоки используются медные прутки, которые по краям замыкаются пластинами (такой вариант двигателя называется с короткозамкнутым ротором).

За счет того, что частоты вращения магнитных полей статора и ротора отличаются, в обмотках последнего за счет индукции наводится электрический ток. Он, в свою очередь, побуждает электромагнитную силу, приводящую ротор в движение (вращение). Разница частот обычно называется скольжением. Его величина составляет порядка 2…10%.

Как можно управлять скоростью вращения двигателя?

Очевидно, что двигатель в обычном режиме работы от сети (электрического шкафа) имеет стандартную скорость/частоту вращения. Это ограничивает прямое его использование, вынуждая применять различные редукторные механизмы для понижения частоты до требуемой. Но даже тогда нет возможности динамично менять обороты, а вместе с ними, мощность, подачу, поскольку все равно остаются фиксированными частоты на выходе из двигателя и редуктора. Для расширения существующих рамок используют разные способы управления (частотные, импульсные, фазные и т. д), которые можно разделить на две большие группы:

ypravlenie chastotoj vrascheniya

Управление асинхронным двигателем

Отличие скалярного от векторного управления как раз заключается в возможности осуществления контроля возбуждения (потока). Фактически, он представляется как двигатель постоянного тока, имеющий независимые друг от друга обмотки. Такой подход позволяет создать подобную математическую модель системы работы контроллера.

Формы и схема векторного управления

Все существующие на сегодня системы векторного управления работой двигателей можно разделить на две группы:

Датчиковые системы являются более сложными, так как точность контроля составляет 1:10000. Бездатчиковые системы работают на уровне не более 1:100. Все частотники с учетом уровня создаваемых помех устанавливаются в центральных или отдельных шкафах.

Если представить все выше сказанное как наглядную схему, то получится нечто следующее:

skhema vektornogo ypravleniya

Здесь можно видеть такие ключевые компоненты системы управления, как:

То, что на схеме отображено в виде блоков, на практике является всего лишь параметрическими элементами цепи управления, которая реализуется на микроконтроллере. Соответственно, сам контроллер и сопутствующие исполнительные механизмы монтируются в электрический шкаф. Для правильного монтажа разрабатывается технологическая карта.

Управление частотными контроллерами

Современные преобразователи частоты тока/напряжения работают и по скалярному, и по векторному варианту, используя параметрические математические модели, реализованные в программном коде встроенного микроконтроллера. Частотники электронного типа работают на тиристорных мостовых схемах и включают следующие основные компоненты:

Поскольку такой переход так или иначе влияет на форму графика выходного напряжения, то блочный контроллер/частотник может использовать в схеме дросселя и специальные ЕМС фильтры. Последние применяют для снижения интенсивности электромагнитных помех.

ypravlenie kontrollerami

Управление частотными контроллерами

Центральный контроллер обеспечивает параметрическое управление схемой, а также вспомогательными задачами, например, диагностикой состояния, защитой от перегрузок и т. п. Сам частотник обычно монтируется в отдельный шкаф, чтобы уменьшить электромагнитные помехи на оборудование.

В целом, векторное управление, организованное на современном контроллере и преобразователе частоты, позволяет добиться плавного регулирования ключевых величин, а также побочных параметров работы оборудования. Ввиду наличия электромагнитных помех при работе, частотники обычно размещают отдельно от основного электрического шкафа.

Источник

AVR494: Управление асинхронным электродвигателем переменного тока по принципу постоянства V/f и обычного ШИМ-управления

Электрическая энергия уже давно используется для формирования механического движения (вращение или перемещение) с помощью электромеханических приводов. По оценкам, 50% электрической энергии, генерированной в США, потребляется электродвигателями. Более 50 электродвигателей обычно можно найти в бытовом хозяйстве и примерно столько же в автомобиле.

В целях охраны окружающей среды и снижения эффекта излучения парниковых газов правительства по всему миру вводят правила, требующие от производителей бытового электрооборудования и промышленных предприятий выпускать продукцию более экономично расходующих электроэнергию. Наиболее часто этого можно достичь за счет эффективного управления скоростью электродвигателя. Это является причинной, почему разработчики бытовых приборов и поставщики полупроводников в настоящее время заинтересованы в разработке недорогих и экономичных регулируемых приводов.

За счет высокой выносливости, надежности, низкой стоимости и высокого к.п.д. (80%) асинхронные электродвигатели используются во многих промышленных приложениях, в т.ч.:

Однако недостатком асинхронных двигателей является работа только на номинальной скорости при подключении к сети. Это является причиной, почему преобразователи частоты необходимы для регулировки частоты вращения асинхронных электродвигателей. Наиболее популярным алгоритмом управления трехфазным асинхронным электродвигателем является алгоритм с поддержанием постоянства отношения напряжение/частота (правило Костенко) и использованием обычного широтно-импульсно модулированного (ШИМ) управления инвертором напряжения, как показано на рисунке 1.1. Целью данных рекомендаций по применению является демонстрация реализации данного способа на основе AVR RISC-микроконтроллере AT90PWM3, разработанного специально для применения в силовой электронике.

2. Ключевые особенности AT90PWM3

Алгоритмы управления реализованы на основе недорого и экономичного однокристального микроконтроллера AT90PWM3, который достигает производительности 16 миллионов инструкций в секунду и ориентирован на применение в качестве устройства управления в повышающих/понижающих преобразователях постоянного напряжения, синхронных электрических машинах на основе постоянных магнитов, трехфазных асинхронных двигателей и бесколлекторных электродвигателей постоянного тока. Микроконтроллер содержит:

Основной особенностью, которая делает данный микроконтроллер привлекательным для применения в устройствах управления электроприводами, является интегрирование трех контроллеров управления силовым каскадом. В состав данных периферийных устройств входят 12-разрядные реверсивные счетчики с двумя компараторами, выходы которых могут управлять силовыми транзисторами инвертора. Эти элементы позволяют генерировать любую трехфазную форму, используя широтно-импульсную модуляцию, и поддерживают простое управление паузами неперекрытия.

3. Принцип действия

3.1 Асинхронный электродвигатель

В противоположность коллекторным и бесколлекторным электродвигателям постоянного тока асинхронные электродвигатели не содержат постоянных магнитов. Ротор выполнен в виде короткозамкнутой обмотки («беличья клетка»), в которой вращающееся электрическое поле создает магнитный поток. Благодаря различиям в скорости между электрическим полем статора и магнитным потоком в роторе электродвигатель способен создавать вращающий момент и совершать вращательное движение.

3.2 Принцип постоянства отношения напряжение/частота (правило Костенко)

Принцип постоянства отношения напряжение/частота наиболее широко распространен в современных регулируемых асинхронных приводах [1,2]. Он может использоваться в приложениях, которые не требуют высоких динамических характеристик, а необходимо только эффективно варьировать частотой вращения в полном диапазоне. Это позволяет использовать синусоидальную установившуюся модель асинхронного электродвигателя, в которой величина магнитного потока статора пропорциональна отношению амплитуды и частоты напряжения статорной обмотки. Если данное отношение поддерживать на постоянном уровне, то постоянство будет сохранять и магнитный поток статора и, таким образом, вращающий момент будет зависеть только от частоты скольжения.

Читайте также:  майкрософт текст инпут апликатион что это

Более точно, исходя из обычной модели асинхронного электродвигателя:

pic1

где pic2— напряжение статора, магнитные потоки статора и ротора, токи статора и ротора, соответственно, а pic3— общее сопротивление статора, сопротивление ротора, индуктивность статора, индуктивность ротора, общая индуктивность рассеяния и угловая частота вращения, соответственно. При питании электродвигателя 3-фазным синусоидальным напряжением с частотой pic4, установившиеся токи в роторе и статоре будут также иметь синусоидальную форму с частотой pic5и pic6. Преобразуем предыдущие выражения к виду pic7, где pic8, а pic9. Однако, амплитудное значение pic10может оставаться постоянным при сохранении постоянства отношения pic11. На высоких скоростях pic12, а амплитудное значение магнитного потока ротора остается постоянным при постоянстве отношения pic13: pic14.

Тогда, вращающий момент электродвигателя пропорционален частоте скольжения: pic15. Данные выражения показывают, что желаемые значения вращающего момента pic16и частоты вращения электродвигателя pic17могут быть достигнуты, если pic18. На низких скоростях pic19, а pic20. Когда частота статора снижается меньше определенной пороговой частоты, амплитуду напряжения необходимо поддерживать на определенном уровне для поддержания постоянства магнитного потока ротора. В противоположность этому, когда частота становится выше номинального значения, амплитуда напряжения останется на номинальном уровне ввиду насыщения ключей инвертора. В этом случае поток ротора будет непостоянным и вращающий момент снизится.

Грубо говоря, скалярный принцип управления «V/f» заключается в подаче на обмотки электродвигателя 3-фазного синусоидального напряжения, амплитуда которого пропорциональна частоте, за исключением частот ниже порогового значения и выше номинального, как показано на рисунке 3.1. На практике, наклон, который определяет отношение амплитуды напряжения к частоте напряжения, определяется по номинальным значениям напряжения питания и частоты питающей сети, которые приводятся в паспорте на электродвигатель, а пороговая частота выбирается по проценту (например, 5%) от номинальной частоты.

Данный принцип может использоваться для построения контуров автоматического управления скоростью (рисунок 3.2), в которых отклонение желаемой скорости от фактического измеренного значения скорости поступает в ПИ-регулятор, где вычисляется значение частоты напряжения статора. В целях снижения сложности регулятора в качестве исходных данных для правила V/f и векторного ШИМ-алгоритма используется абсолютное значение частоты статорного напряжения. Если на выходе ПИ-регулятора присутствует отрицательное значение, то для реверсирования электродвигателя обменивается содержимое двух переменных, управляющие силовыми транзисторами инвертора. Необходимо заметить, что принцип управления, рассмотренный здесь, может использоваться только в приложениях, где поддерживается постоянный уровень скорости при любом допустимом моменте сопротивления. В приложениях, где необходимо поддерживать постоянство момента сопротивления при любых значениях частоты вращения, требуется измерение статорных токов и более сложные принципы управления.

3.3 Принцип обычной широтно-импульсной модуляции

Одним из способов решения задачи формирования с помощью инвертора трехфазной синусоидальной системы напряжений со сдвигом по фазе 120 градусов на обмотках статора является использование таблицы синусов. В этом случае частота статора s определяет три дискретных времени интеграторов, которые вычисляют мгновенные значения фаз для каждого статорного напряжения:

pic21

pic23

Достичь улучшения можно путем добавления к чистой синусоиде в таблице синусов третьей гармоники sita( q ) = sin( q )+1/6sin(3 q ), т.к. она не оказывает влияние на поведение электродвигателя и позволяет генерировать сигнал, первая гармоника которого имеет амплитуду на 15.47% выше (2/ n 3) по сравнению максимумом сигнала (см. рисунок 3.3).

С учетом данного улучшения имеется возможность генерировать более высокое переменное напряжение при питании от той же самой шины постоянного напряжения. Таким образом, имеется возможность увеличения частоты вращения электродвигателя при сохранении постоянства отношения V/F.

Данные значения сравнивают с выходом реверсивного счетчика (используется в качестве генератора треугольных импульсов). Когда выходное значение реверсивного счетчика перешагивает через данные значения, переключается соответствующий выход компаратора. Как результат, в каждом ШИМ-канале генерируются импульсы, коэффициент заполнения которых пропорционален соответствующему значению напряжения статора. Поскольку данный реверсивный счетчик с тремя компараторами достаточно сложен для программной реализации, то такое устройство должно присутствовать в микроконтроллере в качестве встроенного аппаратного блока. Это и послужило причиной выбора микроконтроллера AT90PWM3, в состав которого входят три контроллера силового каскада (PSC). Если рассмотреть в качестве примера первую фазу, коэффициент заполнения импульсов, задаваемый содержимым регистра сравнения соответствующего PSC, будет пропорционален

3.4 Количество байт для хранения таблицы синусов

Однако данное решение не позволяет добавить третью гармонику к функции синуса, необходимость чего обсуждалась в предыдущем разделе. Это является причиной, почему необходимо использовать таблицу преобразования sita( q ) со значениями или sin( q ) или sin( q )+1/6 sin( q ) в диапазоне q между 0 и p /2, а также использовать следующие соотношения для вычисления sita( q ) между p /2 и 2 p :

Последнее решение позволяет достаточно легко обмениваться между двумя возможными таблицами преобразования.

3.5 Принцип действия ПИ-регулятора

Алгоритм ПИ-регулятора может быть реализован без обращения к сложной теории автоматического управления. Целью данного алгоритма является определение управляющего сигнала объектом управления (в нашем случае это частота статорного напряжения), при котором контролируемый выходной сигнал объекта управления (в нашем случае это частота вращения ротора) достигнет заданного значения (желаемая частота вращения, заданная пользователем). ПИ это сокращение от «пропорциональный и интегральный». Эти два термина описывают отдельные элементы регулятора:

Иногда, помимо пропорциональной и интегрирующей части, добавляется третья- дифференцирующая. В этом случае регулятор называется ПИД (пропорционально-интегрально-дифференцирующий). Применение такого регулятора для управления асинхронным электродвигателем по принципу постоянства V/f нецелесообразно. Его применение позволяет повысить быстродействие контура регулирования, но при этом также пропускаются шумы и снижается стабильность замкнутого контура. Кроме того, Д-компонент сложен в настройке.

3.6 Датчики для управления электродвигателем

Датчики скорости играют важную роль в управлении с обратной связью. Для определения частоты и направления вращения ротора могут использоваться несколько решений.

Наиболее точным, но при этом и самым дорогим, является использование абсолютного шифратора (энкодера) или шифратора (энкодера) приращений. Стоимость данных оптических датчиков высока и соразмерна со стоимостью собственно электродвигателя.

Другим решением, которое использовалось авторами данных рекомендаций при экспериментировании, является использование тахогенератора, механически связанного с ротором электродвигателя. Для подключения данного датчика к микроконтроллеру потребуется один канал аналогово-цифрового преобразования.

Третьим решением является использование датчиков на эффекте Холла. Данные недорогие бесконтактные датчики в настоящее время выпускаются в виде компактных корпусных интегральных схем, в состав которых входят собственно датчик и схема формирования выходного сигнала. Такие микросхемы формируют выходной сигнал, который может быть непосредственно подключен к порту ввода-вывода микроконтроллера.

4. Описание аппаратной части (ATAVRMC200)

Рассматриваемое решение присутствует на оценочной плате ATAVRMC200. Данная плата является инструментом, который позволяет начать ознакомление и провести эксперименты по управлению асинхронным электродвигателем. Основные особенности платы ATAVRMC200:

5. Описание программного обеспечения

Все алгоритмы реализованы на языке Си в программных средах для проектирования IAR Embedded Workbench и AVR Studio. ЦПУ тактируется частотой 8МГц, используя внутренний калиброванный RC-генератор. В этом приложении 3 компонента микроконтроллера играют важную роль:

8-разрядный таймер 0 используется для генерации прерываний каждые 1 мс, что определяет частоту преобразования для АЦП и контроллера порта ввода-вывода. Данный таймер используется в режиме CTC (сброс таймера при совпадении) и тактируется частотой 32 кГц. 16-разрядный таймер 1 свободен для решения прочих задач.

Аналогово-цифровой преобразователь также настроен на генерацию прерывания по завершении преобразования. Это позволяет иметь постоянную задержку между двумя выборками измеренной скорости. В качестве опорного напряжения преобразователя выбрано напряжение Vcc.

Читайте также:  много ходила болит пятка что делать

Цифро-аналоговый преобразователь может также использоваться в процессе тестирования для отслеживания изменения внутренних переменных. Для обычного ШИМ-алгоритма используется таблица ближайших значений 127sin(2 k/180) или 127(sin(2 k/480)+1/6 sin(6 k/480)) для значений k=0. 120. Размер данной таблицы (121 байт) является оптимальным с точки зрения размера доступной внутренней памяти и периодичности оцифровки частоты вращения ротора. В случае двунаправленного управления скоростью значения, хранящиеся в обоих компараторах, обмениваются, когда на выходе ПИ-регулятора присутствует отрицательное значение.

6. Задействованные ресурсы

Источник

Векторное управление для асинхронного электродвигателя «на пальцах»

57ec369e97c84548b9f12c8a7f9fe891
В предыдущей статье «Векторное управление электродвигателем «на пальцах» рассматривалась векторная система управления для синхронных электродвигателей. Статья получилась большой, поэтому вопрос про асинхронные электродвигатели (induction motors) был вынесен в отдельную публикацию. Данная статья является продолжением предыдущей и опирается на приведенные там объяснения принципов работы электродвигателей. Она расскажет об особенностях работы асинхронного двигателя применительно к векторному управлению, а также покажет отличия в структуре векторной системы управления между синхронной и асинхронной машиной.
Как работает асинхронный электродвигатель? Наиболее популярное объяснение говорит что-то типа «статор создает вращающееся магнитное поле, которое наводит ЭДС в роторе, из-за чего там начинают течь токи, в результате ротор увлекается полем статора и начинает вращаться». Лично я от такого объяснения всю физику процесса понимать не начинаю, поэтому давайте объясню по-другому, «на пальцах».

Все же видели видео, как магнит взаимодействует с медным цилиндром? Особенно обратите внимание на диапазон времени с 0:49 до 1:03 – это уже самый настоящий асинхронный двигатель:

Эффект происходит из-за появления в цилиндре вихревых токов. Согласно закону электромагнитной индукции, открытого Майклом Фарадеем, при изменении магнитного потока замкнутого контура в нем возникает ЭДС (по-простому считайте, что напряжение). Эта ЭДС, применительно к медному цилиндру, тут же вызывает появление в цилиндре тока. При этом этот ток тоже создает свой, ответный магнитный поток, направленный ровно в противоположную сторону от изменения потока магнита, который мы подносим:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Это можно понимать так, что замкнутый контур сопротивляется изменению магнитного потока внутри себя. Если вы резко поднесёте магнит к медному цилиндру, т.е. сделаете резкое изменение магнитного потока, то в цилиндре потекут такие ответные токи, что магнитное поле внутри цилиндра в первый момент времени будет равно нулю: магнитное поле поднесенного магнита будет полностью скомпенсировано магнитным полем токов цилиндра (с допущениями, конечно). Если магнит поднести и держать, то токи в цилиндре из-за наличия активного сопротивления меди постепенно спадут, а поле цилиндра, создаваемое его токами, пропадет: магнитный поток постоянного магнита «прорвется» внутрь цилиндра, как будто никакого цилиндра и нет. Но стоит попытаться убрать магнит, как цилиндр отреагирует снова – теперь он будет пытаться сам «воссоздать» внутри себя пропадающий магнитный поток, т.е. будет опять сопротивляться изменению магнитного потока, в данном случае его исчезновению. Но что значит «воссоздать магнитный поток»? Это значит, что на какое-то время медный цилиндр можно считать условно «постоянным магнитом» – в нем циркулирует вихревой ток, создающий магнитное поле (на этом же принципе «висят» сверхпроводники в магнитном поле, но это совсем другая история).

Давайте теперь обратимся к конструкции асинхронного двигателя. Ротор асинхронного двигателя условно можно представлять себе также в виде медного цилиндра. Но в реальных конструкциях это некая решётка в виде «беличьей клетки» (рисунок 1) из меди или алюминия, совмещенная с магнитопроводом (шихтованное железо).

a782f792bdfa40a48bbad60f0718f380

Рисунок 1. Ротор асинхронного двигателя типа «беличья клетка» с током в одной из «рамок» беличьей клетки, реагирующей на нарастание внешнего магнитного поля.

На рисунке схематично показано протекание тока в одной из «рамок», т.е. в некоторых прутьях беличьей клетки, если сверху поднести магнит (создать ток в статоре). На самом деле ток в этом случае протекает во всех прутьях, кроме, условно, верхнего и нижнего, для которых изменения потока нет (но они бы среагировали на горизонтально поднесенный магнит).

Помните ещё из начала прошлой статьи картинку со схематическим изображением двухфазной синхронной машины, где ротором был магнит? Давайте теперь сделаем из неё асинхронный двигатель: вместо магнита поставим две перпендикулярные короткозамкнутые катушки, символизирующие медный цилиндр ротора (рисунок 2).

3b8d7299a92f453e8923d512bee2ae11

Рисунок 2. Схематическое изображение двухфазного асинхронного двигателя с короткозамкнутым ротором.

Замена цилиндра на две катушки для пояснения принципа работы (или моделирования) корректна, точно также как корректна замена трехфазной обмотки на двухфазную. Только в этом случае мы заменяем… «бесконечнофазную обмотку» цилиндра (бесконечное число рамок) на две катушки с эквивалентной индуктивностью и сопротивлением. Ведь двумя катушками можно создать точно такой же вектор тока и магнитного потока, как и цилиндром.

А теперь давайте сделаем на короткое время из асинхронной машины синхронную. Подадим в катушку оси β постоянный ток и подождем секунды две-три, пока в роторе перестанут течь ответные токи: «поднесем внешний магнит». То есть дождемся спадания токов в роторе, чтобы магнитное поле статора «пронзило ротор» и никто ему не мешал. Что теперь будет, если выключить ток в статоре? Правильно, на те же две-три секунды, пока ток ротора этому противится, мы из ротора получим «обычный магнит» (рисунок 3).

0ab5cfe933e1488abee3d34521b9435f

Рисунок 3. Асинхронный двигатель, когда только что выключили постоянный ток по фазе β – течет ток в роторе ird.

Что же мы ждем? Быстрее, пока магнит не пропал, рисуем вдоль него привычную ось d (как в синхронной машине) и перпендикулярную ей ось q, привязанные к ротору. Включаем структуру векторного управления синхронной машиной, подаем ток по оси q, создавая момент, поехали!

Так можно даже действительно сделать несколько оборотов, пока наш сахарный магнит не растаял, а ось d не ушла в небытие. Что же делать? Давайте не будем выключать ток по оси d, подпитывая наш магнит! И опять же сохраним структуру векторного управления синхронной машиной, просто подав задание по оси d (раньше там был ноль). Итак, смотрим на рисунок 4: оси d, q по датчику положения «приделаны» к ротору, двигатель стоит, подан ток по оси d в статоре, что в данном случае для стоячей машины совпадает с осью β. Тока по оси q пока нет: ждем, пока ротор «намагнитится». И вот подаем ток isq (s – статор)! Поехали!

479dd1244f834f4a894aef7c514ef653

Рисунок 4. Подадим ток в ось d, намагнитив машину, подготовив всё для подачи тока в ось q статора.

Далеко ли мы уедем таким методом барона Мюнхгаузена? К сожалению, нет. Смотрите, что произошло (рисунок 5):

7b364bb6868d4e1280f671c39a2a36ed

Рисунок 5. А магнит-то сполз!

Двигатель начал крутиться, но через некоторое время после того, как мы подали ток в ось q, образовав суммарный ток is и «прибив» этот вектор к положению ротора, магнит в роторе «съехал»! И встал ровно вдоль вектора is. Ротор же не понимает, где мы нарисовали ему оси d, q… Ему все равно, крутился он или нет. Важно, что его внутренний «наведенный магнит» в конечном счете хочет стать сонаправленным с магнитным потоком статора, «подчиниться» внешнему потоку. Из-за съехавшего магнита двигатель перестанет крутиться: мало того, что между магнитом ротора и током iq нет желаемых 90 градусов, так еще и ток оси d теперь его тянет в противоположную сторону, компенсируя момент, создаваемый током iq. Метод барона Мюнхгаузена не удался.

Читайте также:  Замена двигателя на инжекторный 2110

Что же делать с ускользающим магнитом ротора? А давайте сделаем структуру векторного управления асинхронного двигателя не в осях d,q, приделанных к ротору, а в других осях, приделанных именно к текущему положению «магнита ротора» – назовем их оси x,y, чтобы отличать от d,q. По «научному» – это оси, ориентированные по потокосцеплению ротора. Но как же узнать, где конкретно сейчас это потокосцепление ротора, т.е. куда повернут магнит в роторе? Его положение зависит… во-первых, от положения самого ротора (датчик положения у нас есть, хорошо), во-вторых, от токов статора (создающих поток статора, по которому и собирается в конечном счете повернуться магнит ротора), а в-третьих от параметров роторной цепи – индуктивности и сопротивления «медного цилиндра» (он же беличья клетка, он же роторная обмотка, он же цепь ротора). Поэтому… зная всё это, положение «магнита» ротора можно просто вычислять по нескольким дифференциальным уравнениям. Делает это так называемый наблюдатель потокосцепления ротора, выделенный цветом на итоговой структурной схеме векторного управления асинхронным двигателем (рисунок 6).

5f3d70ee1115408bb220e33f66f2be21

Рисунок 6. Векторная датчиковая структура управления асинхронным двигателем

В наблюдатель заводятся показания с датчика положения ротора, а также текущие токи статора в осях α, β. На выходе наблюдателя – положение «магнита» ротора, а именно угол наблюдаемого потокосцепления ротора 802d3ea54e7b4c43bf75f9fdd4ae8384. В остальном структура полностью аналогична таковой для синхронной машины, только оси d,q переименованы в x,y, а на ось x подано задание тока, который будет поддерживать наш «магнит» в роторе. Также на многих обозначениях добавлен индекс “s”, чтобы показать, что данная величина имеет отношение к статору, а не к ротору. Также надо отметить, что в западной литературе не используют оси x,y: у них ось d всегда направлена по полю ротора, что для асинхронного двигателя, что для синхронного. Наши ученые еще в советское время разделили оси d,q и x,y, чтобы исключить путаницу: d,q прикреплены к ротору, а x,y к полю ротора.

Что же получается? Магнит ротора всё время скользит, сползает от текущего положения на роторе в сторону тока оси y. Чем больше этот ток, тем сильнее скольжение. Наблюдатель в реальном времени вычисляет положение этого магнита и «подкручивает» оси x,y всё время вперед по отношению к осям d,q (положению ротора). Ось x всегда соответствует текущему положению потокосцепления в роторе – положению «магнита». Т.е. оси x,y бегут всегда (в двигательном режиме) немного быстрее вращения ротора, компенсируя скольжение в нем. Токи в роторе, если их измерить или промоделировать, получаются синусоидальными. Только изменяются они не с частотой статорных токов, а с частотой этого скольжения, т.е. очень медленно. Если в статоре промышленного асинхронника 50Гц, то при работе под нагрузкой частота тока в роторе – единицы герц. Вот, собственно, и весь секрет векторного управления для асинхронного двигателя.

Чем векторное управление асинхронным двигателем лучше, чем скалярное? Скалярное управление это такое, когда к двигателю прикладывается напряжение заданной частоты и амплитуды – например, 380В 50Гц. И от нагрузки на роторе оно не зависит – никаких регуляторов токов, векторов… Просто задается частота напряжения и его амплитуда – скалярные величины, а токи и потоки в двигателе пусть сами себе удобное место находят, как хотят. В установившемся режиме работы двигателя векторное управление неотличимо от скалярного – векторное точно также будет прикладывать при номинальной нагрузке те же, скажем, 380В, 50Гц. Но в переходных режимах… если нужно быстро запустить двигатель с заданным моментом, если нужно отрабатывать диаграмму движения, если есть импульсная нагрузка, если нужно сделать генераторный режим с определенным уровнем мощности – всё это скалярное управление или не может сделать, или делает это с отвратительными, медленными переходными процессами, которые могут к тому же «выбить защиту» преобразователя частоты по превышению тока или напряжения звена постоянного тока (двигатель колеблется и может запрыгивать в генераторный режим, к которому преобразователь частоты не всегда приспособлен).

В векторной же структуре «всё под контролем». Момент вы задаете сами, поток тоже. Можно ограничить их на нужном уровне, чтобы не превысить уставок защиты. Можно контролируемо форсировать токи, если кратковременно нужно сделать в несколько раз больший момент. Можно регулировать не только момент двигателя, но и поток (ток оси x): если нагрузка на двигателе мала, то нет никакого смысла держать полный поток в роторе (делать магнит «номинального режима») – можно ослабить его, уменьшив потери. Можно стабилизировать скорость регулятором скорости с высокой точностью и быстродействием. Можно использовать асинхронный привод в качестве тягового (в транспорте), задавая требуемый момент тяги. В общем, для сложных применений с динамичной работой двигателя векторное управление асинхронным двигателем незаменимо.

Также есть отличительные особенности векторного управления асинхронного двигателя от синхронного. Первая – это датчик положения. Если для синхронного привода нам нужно знать абсолютное положение ротора, чтобы понять, где магнит, то в асинхронном приводе этого не требуется. Ротор не имеет какой-то выраженной полюсной структуры, «магнит» в нем постоянно скользит, а если посмотреть в формулы наблюдателя потокосцепления ротора, то там не требуется знания положения: в формулы входит только частота вращения ротора (на самом деле есть разные формулы, но в общем случае так). Поэтому на датчике можно сэкономить: достаточно обычного инкрементального энкодера для отслеживания частоты вращения (или даже тахогенератора), абсолютные датчики положения не требуются. Вторая особенность – управление потоком в асинхронном электродвигателе. В синхронной машине с постоянными магнитами поток не регулируется, что ограничивает максимальную частоту вращения двигателя: перестает хватать напряжения на инверторе. В асинхронном двигателе, когда это случается… просто уменьшаете задание по оси x и едете дальше! Максимальная частота не ограничена! Да, от этого будет снижаться момент двигателя, но, главное, ехать «вверх» можно, в отличие от синхронной машины (по-правде там тоже можно, но недалеко, не для всех двигателей и с кучей проблем).

Точно также существуют бездатчиковые алгоритмы векторного управления асинхронным двигателем, которые оценивают угол потокосцепления ротора не используя сигнал датчика положения (или скорости) вала ротора. Точно также, как и для синхронных машин, в работе таких систем есть проблемы на низкой частоте вращения ротора, где ЭДС двигателя мала.

Также следует сказать пару слов о роторе. Если для промышленных асинхронных двигателей его удешевляют, используя алюминиевую беличью клетку, то в тяге, где массогабаритные показатели важнее, наоборот, могут использовать медный цилиндр. Так, во всеми любимом электромобиле Tesla стоит именно асинхронный электродвигатель с медным ротором (рисунок 7)

dcf9a6072f664453a755e6bca11a2cdd

Рисунок 7. Ротор асинхронного электродвигателя Tesla Model S в стальной обшивке (фото из разных источников за разные годы)

Вот, собственно, и всё, что я хотел сказать про асинхронный двигатель. В данной обзорной статье не рассмотрены многие тонкости, такие как регулятор потока ротора, возможное построение векторной структуры в других осях координат, математика наблюдателя потокосцепления ротора и многое другое. Как и в конце прошлой статьи, за дальнейшими подробностями отсылаю читателя к современным книгам по приводу, например к «Анучин А. С. Системы управления электроприводов. МЭИ, 2015».

На каком микроконтроллере можно сделать полноценное векторное управление, читайте, например, в статье «Новый отечественный motor-control микроконтроллер К1921ВК01Т ОАО «НИИЭТ», а как это отлаживать в статье «Способы отладки ПО микроконтроллеров в электроприводе». Также наша фирма ООО «НПФ Вектор» предлагает разработку на заказ систем управления электродвигателями и другим электрооборудованием, примеры выполненных проектов можно посмотреть на нашем сайте.

Источник

Поделиться с друзьями
admin
Ваша безопасность
Adblock
detector