Какая температура в турбине двигателя

Содержание

Турбомоторы: глушить сразу или дать остыть? Мнения экспертов

Почему возможен перегрев

Другая возможность сильно нагреть турбокомпрессор — это езда в тяжелых условиях: по бездорожью и т. п. Максимальную мощность мотор при этом не разовьет, поскольку колеса сорвутся в пробуксовку. Однако отсутствие встречного воздушного потока способствует росту температуры двигателя, а заодно и турбокомпрессора. Перегрев возможен и при движении в горах с большим количеством подъемов, а также с прицепом.

Но пик неприятностей наступает не во время работы, а потом! После остановки двигателя охлаждение раскаленного турбокомпрессора резко ухудшается. Масло уже не подается, тепло уходит в подшипниковый узел, остатки смазки в подшипнике и его уплотнениях начинают закоксовываться. Со временем это приводит к ухудшению уплотнения и нарушению расчетного режима работы подшипника. А вращение ротора без подачи масла под давлением провоцирует появление задиров.

Системы жидкостного охлаждения турбокомпрессора также прекращали работу после остановки мотора и, соответственно, не отводили тепло от агрегата наддува. Поэтому и появились рекомендации не глушить моторы сразу, а дать им поработать какое-то время на минимальных оборотах холостого хода. Масло и охлаждающая жидкость при этом будут циркулировать, температура выпускных газов, поступающих в турбинную часть, понизится — в итоге турбокомпрессор остывает, а затем мотор можно безбоязненно глушить.

Турботаймер и циркуляционные насосы

Штатно же турботаймеры не устанавливают даже на автомобили с заряженными двигателями. И не потому, что проблема куда-то пропала — принципиально в ДВС ничего не поменялось. Да, изменились и стали более совершенными конструкции, материалы и смазки, но перегрева турбокомпрессоры по-прежнему не любят. Может, автопроизводители применяют иные средства защиты турбокомпрессоров от перегрева?

Некоторые компании (в частности, Porsche, Volkswagen, Skoda, Jaguar) на многие модели с турбонаддувом устанавливают электрические циркуляционные насосы, которые при необходимости подают к турбокомпрессору охлаждающую жидкость. В том числе и после остановки двигателя — антифриз некоторое время циркулирует через агрегат, препятствуя его перегреву. Напоминает аналогичный режим работы электровентиляторов системы охлаждения, реализованный на большинстве современных автомобилей. Мотор выключен, а вентилятор продолжает крутиться. Понятно, что в этом случае в турботаймере нет необходимости.

Многие автопроизводители перекладывают функцию интеллектуального турботаймера на водителя! В большинстве инструкций отмечено, что после эксплуатации автомобиля в режимах, близких к предельно допустимым, рекомендуется перед выключением мотора дать ему поработать без нагрузки в течение нескольких минут. То есть советы остались теми же, что и десятилетия назад.

В прошлом году из 25 самых продаваемых в России моделей турбокомпрессорами были оснащены пять. При этом дополнительный электрический насос, охлаждающий турбокомпрессор, используют в трех моделях — это Skoda Kodiaq, Skoda Octavia A7 и VW Tiguan. Выходит, большинство производителей сравнительно доступных автомобилей не заморачивается подобными проблемами. Логика проста: удорожания не происходит, а гарантийный срок автомобиль, скорее всего, и так выходит. Что дальше — забота владельца.

Не глушите мотор сразу — дайте ему поработать на минимальных оборотах. Условия работы турбокомпрессора — очень тяжелые, а новшеств, делающих его бессмертным, не появилось.

Наши рекомендации

Мы придерживаемся иного мнения. Условия работы турбокомпрессора — очень тяжелые, а принципиальных новшеств, делающих его бессмертным, пока не появилось. К тому же это недешевый агрегат: ремонт ударит по карману, когда гарантия закончится. И если ваш автомобиль не оборудован электрическим насосом, качающим охлаждающую жидкость после остановки, настоятельно рекомендуем выдерживать паузы в одну-две минуты, прежде чем глушить мотор, поработавший на пределе. Однако как понять, есть такой насос на вашей машине или нет? Например, на слух: после интенсивной езды остановить мотор и прислушаться, есть ли характерное жужжание. Но лучше перестраховаться, ­даже если автопроизводитель говорит, что ­проблем не будет.

Альтернативный комментарий специалиста

За 11 лет работы на полигоне я ни разу не встретил автомобиль с турбонаддувным двигателем, который был бы оснащен турботаймером в базовом оснащении. Видимо, производители считают, что при нормальной эксплуатации, применении качественных смазочных материалов и топлива, а также при правильном и своевременном выполнении ТО и ремонта проблем с турбокомпрессором не будет.

Агрегат наддува обладает достаточным ресурсом, и его охлаждение с рабочих и расчетных температур будет происходить за счет инерции. Запаса жаростойкости примененных материалов также хватит.

Понравилась заметка? Подпишись и будешь всегда в курсе!

Источник

Температуры газов за турбиной двигателя.

Содержание лекционного занятия

Введение

Вопрос 1. Контролируемые параметры силовых установок,

Агрегатов и систем ЛА.

Основные параметры, характеризующие режимы работы силовых установок, и их измерители приведены в таблице 1.

Таблица 1.Параметры режимов работы силовой установки

Параметр Обозначение Применяемый измеритель
Частота вращения об/мин Температура в двигателе перед турбиной за турбиной масла воздуха топлива Давление в двигателе, Па: топлива масла за компрессором в воздухозаборнике Перепад давл. на турбине, Па Отношение давление на входе в двигатель и за турбиной двигателя Расход топлива, кг/ч: основного форсажного Количество топлива в баках: объёмного, м 3 массовые, кг Амплитуды вибрации, мм Частота вибрации, Гц Скорость вибрации, мм/с n T3 T4 Tм TВ TT РТ РМ РК РПР εт π Qт Qф Vт Мт ав fв υв Измеритель част. вращения (тахометр) Термометры Манометры Дифманометр Измеритель отношения давления Расходомеры Топливомеры Измерители параметров вибрации

Приборы контроля силовых установок предназначены для измерения и индикации параметров, характеризующих режимы работы силовых установок, управления и стабилизации этих режимов и сигнализации аварийных состояний.

С помощью этих приборов экипаж ЛА получает необходимую информацию о температуре и давлении жидкости и газов в различных системах силовых установок, об угловой скорости вращения валов двигателя или газовой турбины, расходе в единицу времени, общем количестве топлива и распределении его по бакам на борту ЛА и т.д.

Обобщённое функциональное выражение прибора контроля параметров силовых установок можно представить в виде:

где, F – требуемая функция преобразования, реализуемая прибором;

Z – вектор внешних параметров, отражающих условия работы прибора (давление, температура, влажность и т.д.); Q – вектор внутренних параметров прибора (геометрические размеры элементов прибора, характеристики материалов, из которых изготовлены элементы, параметры физических законов, на основании которых действует прибор и т.д.).

Упрощённая структурная схема прибора представлена на рисунке 1.

Z1
Z2
Zm
q1, q2, q3,…., qn
X(t)
Y(t)

Рис. 1. Прибор контроля параметров силовых установок

Вывод: большинство систем применяемых для индикации и регистрации вышеуказанных параметров выполнены дистанционными, состоящими из датчиков и указателей. Датчики устанавливаются в магистралях и узлах контролируемых систем, а указатели – на приборной досках и пультах лётчиков.

Вопрос 2. Принцип работы приборов и систем для измерения

температуры газов за турбиной двигателя.

Для получения максимальной энерговооружённости и экономичности полёта силовые установки ЛА работают с предельной тепловой напряжённостью. Вследствие этого на борту ЛА необходимо измерять и контролировать температуру различных сред и конструкций с высокой точностью. Так, на ЛА измеряют температуру газов в газотурбинных двигателях, масла в системах смазки, тепловоздушной смеси, окружающего воздуха, головок цилиндров поршневых двигателей и т.д.

Приборы для измерения температуры, применяемые в авиации, имеют чувствительные элементы (ЧЭ), которые непосредственно приводятся в соприкосновение со средами или конструкциями, температура которых измеряется. Передача тепла ЧЭ происходит либо путём теплопроводности при измерении температуры твёрдых тел, либо конвекции при измерении температуры жидких или газообразных сред. В качестве авиационных термометров наибольшее распространение нашли терморезисторные и термоэлектрические термометры дистанционного типа.

Терморезисторные термометры основаны на свойстве металлических и полупроводниковых терморезисторов, изменять своё сопротивление в зависимости от температуры.

Для металлических терморезисторов зависимость сопротивления R от измеряемой температуры Т в определённом интервале значений является линейной функцией

где, Ro – сопротивление терморезистора при температуре Τo;

α – температурный коэффициент сопротивления.

В качестве материалов, которые используются для изготовления металлических терморезисторов, применяются химически чистые металлы, так как они обладают большими значениями α, стабильностью их в широком диапазоне температур, хорошей воспроизводимостью свойств и стойкостью к внешним воздействиям.

Значения температурных коэффициентов сопротивления α в диапазоне температур от 0 0 до 100 0 С следующие

Металл Ni Al Cu Ag Au Pl

Для полупроводниковых терморезисторов (термисторов) функция сопротивления R от температуры описывается нелинейной зависимостью

где, А, В – постоянные, характеризующие свойства материала термистора;

640 1

Для изготовления термисторов применяются в основном медно-марганцевые и кобальтомарганцевые соединения. В авиационных терморезисторных термометрах в качестве термочувствительного элемента (ЧЭ) наибольшее распространение получила никелевая проволока, выдерживающая нагрев до 300 0 С. Её недостатком является зависимость температурного коэффициента αNi от примесей в металле. Чтобы исключить этот недостаток и обеспечить взаимозаменяемость датчиков, последовательно обмотке из никелевой проволоки подключают дополнительные сопротивления RМ из материала с возможно малым температурным коэффициентом αМ, обычно из константана или манганина.

Читайте также:  Дизельный двигатель лучше бензинового двигателя

Термометр типа ТЭУ. Унифицированный электрический термометр сопротивления предназначен для измерения температуры масла, воды и воздуха от – 70 до 150 0 С. Комплект термометра состоит из датчика, указателя и линии связи. Электрическая схема прибора приведена на рисунке 2.

image001

Рис.2. Унифицированный электрический термометр сопротивления

Терморезистор Rt никелевой проволоки включён в одно из плеч двойного моста. В качестве указателя применён логометр с неподвижными рамками LL2и подвижным магнитом Е1. Одни концы рамок логометра соединены в общую точку А, другие – в мостовую схему через сопротивление температурной компенсации RR2 к точкам В и С. Параметры схемы рассчитаны так, что при температуре, равной половине диапазона измерений, потенциал точки А равен половине суммы потенциалов точек В и С. В этом случае токи в рамках LL2 равны, но противоположны по направлению. Подвижный магнит под действием магнитных полей рамок отклонится на угол, при котором стрелка, закреплённая на оси магнита, установится по шкале указателя в среднее положение. При изменении температуры среды сопротивление терморезистора Rt и потенциал точки А изменятся. Нарушится равенство токов в рамках. Стрелка логометра покажет по шкале указателя новое значение температуры. Схема двойного моста, применяемая в ТЭУ, имеет значительно сниженные температурные погрешности и повышенную чувствительность по сравнению со схемой, применяемой в ЭДМУ.

image002

Термодатчик. Конструктивно термодатчик (Рис. 3) состоит из теплочувствительного элемента, корпуса 1 и штепсельного разъёма 5. Теплочувствительный элемент представляет собой тонкую (d = 0,05 мм) никелевую проволоку 8, намотанную на слюдяную пластину 9. Для изоляции никелевую обмотку закрывают с обеих сторон так же слюдяными пластинами. Улучшению теплообмена между никелевой проволокой и окружающей средой служат теплопроводящие прокладки 10 из серебра. Материалом для изготовления корпуса 1 служит нержавеющая сталь. В качестве указателя применяется логометр, имеющий такое же устройство, как и в ЭДМУ.

Датчик типа ТНВ. Для скорости набегающего потока до 100 м/с применяются конструкции, подобные рассмотренной (термодатчик). Торможение потока среды датчиком при таких скоростях не вызывает значительной погрешности. Для измерения температуры среды, движущейся с большими скоростями, корпус датчика конструируют так, что ЧЭ располагается вдоль набегающего потока.

image003

Рис. 4.Конструкция датчика типа ТНВ

Корпус 2 датчика типа ТНВ для измерения температуры наружного воздуха представляет собой сопло Лаваля, которое устанавливается своей продольной осью вдоль вектора скорости набегающего потока. Термочувствительный элемент 1 состоит из изолированной никелевой проволоки, намотанной на медный каркас. Такая конструкция датчика при скорости ЛА, соответствующей М ≥ 0,5, обеспечивает в узком сечении сопла скорость течения воздуха, равную скорости звука в этой среде. На основе знания температуры ЧЭ ΤТ и числа М определяется температура невозмущённого потока среды

При изменении температуры у терморезисторных термометров возникают методические погрешности:

— за счёт передачи части тепла от терморезистора к месту его крепления и конструкциям, имеющим меньшую температуру, чем температура измеряемой среды;

— от торможения потока движущейся среды на датчики, при котором происходит переход в тепло кинетической энергии движущейся среды;

— от нагрева терморезистора протекающим по нему током.

Первую методическую погрешность уменьшают путём увеличения площади части датчика, погруженной в среду, и улучшения теплоизоляции непогруженной части. Вторая погрешность устраняется с помощью изменения конструкции датчиков.

Динамическая погрешность, которая свойственна терморезисторным термометрам, объясняется тем, что датчик, обладая определённой теплоёмкостью, не может мгновенно реагировать на изменение температуры среды, а делает это с конечной скоростью, определяемой конструкцией датчика. Погрешности указателя подобны погрешностям логометра ЭДМУ. Общая суммарная погрешность термометров типа ТУЭ составляет ±3%.

Термоэлектрические термометры. Принцип их действия основан на термоэлектрическом эффекте возникновения термоэлектродвижущей силы в термопаре при наличии разности температур её спаев. Термопара, которая является ЧЭ термоэлектрического термометра, состоит из двух разнородных проводников, соединённых между собой путём спайки, сварки или оплавления (Рис. 5).

image004

Рис. 5.Термопары с одним и двумя спаями

Для термопары термо-э.д.с. равна алгебраической сумме разностей потенциалов всех спаев. В термопаре, имеющей два спая, термо-э.д.с.

где, φА и φВ – потенциалы проводников А и В соответственно;

Τ1 – температура исследуемой среды или температура горячего спая;

Τ2 – температура окружающей среды или температура холодного спая.

Для многих металлов возможна аппроксимация предыдущего выражения

где, k – коэффициент пропорциональности, зависящий от материалов термопары.

Если температура холодного спая равна нулю, то зависимость термо-э.д.с. от температуры горячего спая ЕАВ = kΤ1 при Τ2 = 0.

В авиационных термоэлектрических термометрах наибольшее применение нашли следующие термопары:

хромель – копель (Х-К), хромель – алюмель (Х-А), никель – кобальтовый сплав – специальный алюмель (НК-СА) и железоникелевый сплав – специальный копель (НЖ-СК).

image005

Рис. 6. Статические характеристики применяемых термопар

На графике представлены статические характеристики наиболее применяемых термопар при температуре холодного спая, равной 0 0 С, из которых видно, что термопары НК-СА и НЖ-СК имеют зоны нечувствительности, т.е. возникновение термо-э.д.с. у них начинается только при определённых температурах, для термопары НК-СА при Τ1>300 0 С, для НЖ-СК при Τ1>100 0 С. Благодаря этому свойству в указанных термопарах колебания температуры окружающей среды от +60 до- 60 0 С практически не оказывают влияние на значение термо-э.д.с. Следовательно, термометры, построенные на их основе, не имеют методической погрешности, которую вносит изменение температуры холодного спая.

Для измерения температуры могут быть использованы как отдельные термопары, так и термобатареи – соединение из нескольких термопар. Термобатареи измеряют температуру в различных точках среды и развивают термо-э.д.с., соответствующую средней измеренной температуре. Типовая электрическая схема авиационного термометра представлена на схеме. Такая схема относится к измерительным цепям прямого преобразования.

image006

Рис. 7. Термопары НК-СА

Для уменьшения числа холодных спаев, являющихся источниками паразитных термо-э.д.с., в рассматриваемых схемах стремятся уменьшить число разнородных проводников. Поэтому провода, соединяющие термопару и указатель, изготавливают из тех же материалов, что и электроды термопар. В тех случаях, когда термопары состоят из благородных металлов, на изготовление проводов идут материалы с термоэлектрическими свойствами, подобными свойствам термопары. Соединительные провода для комплектов термопар НС – СА и НЖ – СК изготавливают из медного провода, так как медь в паре с этими термопарами развивает малые термо-э.д.с. при значительных изменениях Τ2.

В качестве указателей используются магнитоэлектрические гальванометры.

Особенностью конструкции датчика термометра, представленного на рисунке 8 является наличие в защитной трубке 3 термопары 1 окна 2 большого размера для входа газов и окна 4 малого размера для выхода газов.

image007

Рис. 8.Конструкция датчика-термометра с термопарой

Такая конструкция обеспечивает измерение температуры потока газов в заторможенном состоянии. По технологическим причинам невозможно получить идентичные статические характеристики всех изготавливаемых термопар. Поэтому термопары разделяют по группам, объединяя в них термопары с одинаковыми статическими характеристиками.

Соответственно каждой группе датчиков производится градуировка шкал указателей. Как датчики, так и указатели маркируются согласно нормам групп. При эксплуатации не допускается совместная установка датчиков и указателей, относящихся к разным группам.

Указателями термометров типа ТВГ (Рис. 9) являются магнитоэлектрические гальванометры.

image008

9. Указатель термометра 10. Конструкция магнитоэлектрического

С появлением ЛА больших размеров и увеличением расстояния между местами установки датчиков и указателей, а также ужесточением требований к точности измерений широкое применение получили термометры, основанные на компенсационном методе измерений (Рис. 11).

image009

Рис. 11. Схема термометра, основанного на компенсационном методе измерений

Разность термо-э.д.с., снимается с термопар Т, и напряжение компенсации, снимаемое с мостовой схемы, состоящей из резисторов R1 – R9, поступают на усилитель УС и двухфазный индукционный реверсивный двигатель М. Последний через редукторы Р1и Р2 перемещает стрелки указателя и изменяет сопротивление R6 до тех пор, пока напряжение мостовой схемы не скомпенсирует термо-э.д.с., получаемой с термопар Т. Питание мостовой схемы осуществляется от выпрямителя, состоящего из резисторов R13, R14, диода Д1, фильтрующей ёмкости С1 и стабилизаторов Д2 –Д6.

При изменении температуры окружающей среды меняется термо-э.д.с. термопар, но одновременно меняется и напряжение диагонали мостовой схемы за счёт изменения терморезистора R2, имеющего температуру холодного спая термопар. Параметры схемы подобраны так, что они полностью взаимно компенсируются. Таким образом. В измерительную цепь указателя подаётся сигнал от термопар, соответствующий температуре их горячих спаев. Ввиду особенностей компенсационного метода измерений общие суммарные ошибки такого прибора будут составлять ± 10 0 С при диапазоне измерений 300 – 1000 0 С.

Источник

Основы турбонаддува

Основные принципы работы турбодвигателя.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

thumb small 5ffd7d3861b12d4a1b3da314fe6b392a‘); w.show();» alt=»Tech101_turbo.jpg» title=»Tech101_turbo.jpg»/>

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

Схема внутреннего устройства турбокомпрессора:

thumb small b28a729c0850be53248797c5cd7e3a1f‘); w.show();» alt=»Cutaway.jpg» title=»Cutaway.jpg»/>

В зависимости от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off

Wastegate:

Представляет собой механический клапан установленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельные моторы используют турбины без вейстгейтов. Тем не менее, подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов, которое уходит через вал на компрессор и, тем самым, управляем давлением наддува, создаваемым компрессором. Как правило, вейстгейт использует давление наддува и давление встроенной пружины, что бы контролировать обходной поток выхлопных газов.

Читайте также:  модифицированное масло что это такое

thumb small 901be6feabc2af72d3c1e457ddd6c85b‘); w.show();» alt=»InternalWG.jpg» title=»InternalWG.jpg»/>
Встроенный вейстгейт состоит из заслонки, встроенной в турбинный хаузинг (улитку), пневматического актуатора, и тяги от актуатора к заслонке.

thumb small 04e8768f77f0bd1593aae2d54b2d0681‘); w.show();» alt=»ExternalWG.jpg» title=»ExternalWG.jpg»/>
Внешний гейт представляет собой клапан, устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину ввиду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и масляное обеспечение:

Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована, если давление масла в вашей системе превышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно, чтобы центральный картридж турбины был ориентирован сливом масла вниз.

Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.

Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно также обеспечить минимум неравномерности по вертикали линии подачи воды, а также несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Выбор турбины.

Правильный подбор турбины является ключевым моментом в постройке турбомотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливовоздушной смеси, которая через него проходит за единицу времени, определив целевую мощность, мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя, на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее, за счет большего рабочего диапазона работы двигателя и быстрого выхода турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.

Втулочные турбины были самыми распространенными в течение долгого времени, тем не менее, новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.

thumb small 5f7d74be47b497bfa89cc87a0fdcd416‘); w.show();» alt=»Ball_brg.jpg» title=»Ball_brg.jpg»/>
thumb small 8b8dbc8316fb0bf577ed4429369fa779‘); w.show();» alt=»Journa_brg.jpg» title=»Journa_brg.jpg»/>

Отзывчивость турбины на дроссель в значительной степени зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.

thumb small a9dd114637f8d6b1954c83660fd63c80‘); w.show();» alt=»Tech101_speed.jpg» title=»Tech101_speed.jpg»/>

Шарикоподшипниковые турбины также требуют значительно меньшего потока масла через картридж для смазки подшипников. Это снижает вероятность утечек масла через сальники. Такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Термин Trim.

Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например, вы часто могли слышать фразу У меня стоит турбина GT2871R с 56 Trim. Так что же это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или компрессорного колеса. Еще более точно, это соотношение их площадей.

thumb small 653b180fd635b0e5bf8baaccb942c0c8‘); w.show();» alt=»tech102_wheels.jpg» title=»tech102_wheels.jpg»/>

Например:
Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с:
Диаметр индюсера: 53.1мм
Диаметр эксдюсера: 71.0мм

Таким образом Trim для него будет:

thumb small 9f4c5300feb1d6b29b6ac7de9ae7b83a‘); w.show();» alt=»formula_1.gif» title=»formula_1.gif»/>

Trim крыльчатки, как компрессора, так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку.

Понятие A/R хаузинга

A/R (Area/Radius) описывает геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленое на расстояние от центра вала до центра этого сечения:

thumb small b2ad95254fa529b5c6e31bf88563b501‘); w.show();» alt=»HSGAR.gif» title=»HSGAR.gif»/>

Значение A/R имеет разное влияние на производительность турбинной части и компрессорной.

A/R компрессора практически не влияет на его производительность. Как правило, хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува.

A/R турбины, наоборот, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге, приходящего на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемых для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому, что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это также увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность.

thumb small 76ab1baaf17e768c51e0a66b50ce5445‘); w.show();» alt=»TiALvsCast.jpg» title=»TiALvsCast.jpg»/>

Также при выборе A/R следует принимать во внимание эффективность всего выпускного тракта после турбины. Использование прямоточных выхлопных систем большого сечения позволяет использовать чуть меньший А/Р турбины и при той же пиковой мощности получить более ранний выход на наддув.

Виды выпускных коллекторов и их влияние

В основном все турбоколлекторы делятся на два типа: литые log-style и трубные сварные:
thumb small 63ffcda47400e3a5564dc875a4692f96‘); w.show();» alt=»Cast_log_style_enlarged.jpg» title=»Cast_log_style_enlarged.jpg»/>

thumb small 58f37745607bcfc4f932606a44aac618‘); w.show();» alt=»Welded_tubular_turbocharger.jpg» title=»Welded_tubular_turbocharger.jpg»/>

Дизайн турбоколлектора довольно сложный процесс т.к. очень много факторов должно быть принянто во внимание. Ниже приведены общие советы для достижения максимальной производительности:

— Старайтесь использовать максимально возможный радиус поворотов, т.к. как каждый крутой изгиб ранера поглощает часть полезной энергии потоков газа.
— Добивайтесь равной длины ранеров для избежания перекрестного наложения выхлопных импульсов.
— Избегайте резких изменений сечения
— В сводах ранеров избегайте резких углов для сохранения направления и скорости потока
— Для лучшей отзывчивости турбины избегайте больших объемов коллектора, для большей пиковой мощности, наоборот, может быть использован больший объем коллектора
— Оптимально выбирайте длину ранеров и объем коллектора в зависимости от объема мотора и диапазона оборотов на которых необходимо получить наилучшую отдачу

Литые коллектора чаще всего применяются в заводских гражданских компоновках, в то время как сварные трубные коллекторы чаще применяются в спортивных вариантах моторов. Оба вида имеют свои достоинства и недостатки.

Литые коллекторы обычно весьма компактны и более дешевы при массовом производстве.

Трубные коллекторы могут быть изготовлены в малых сериях или единичных экземплярах для конкретного случая и не требуют такой сложной предварительной организации производства как литые. Правильно разработанный и изготовленный трубный коллектор обеспечивает длительный срок эксплуатации и значительное улучшение производительности по сравнению с литым log-style коллектором.

Твинскрольные коллекторы

Твинскольный коллектор может быть как литым так и сварным трубным и используется в паре с соответствующим твинскольным турбинным хаузингом.

thumb small bfaa6a91e20fb328ad35851fbb986730‘); w.show();» alt=»Cast_Twin.jpg» title=»Cast_Twin.jpg»/>

thumb small fb37a1e3749eb75c797878d225ea73e1‘); w.show();» alt=»Welded_Twin.jpg» title=»Welded_Twin.jpg»/>

Назначение такой конструкции в разделении цилиндров, чьи рабочие циклы могут пересекаться между собой и для лучшего использования выхлопного импульса каждого цилиндра.

Наример, на 4-х цилиндровом моторе с порядком работы цилиндров 1-3-4-2, цилиндр #1 начинает свою фазу выпуска пока еще не закончена выпускная фаза в цилиндре #2, и его выпускной клапан открыт, а в зависимости от величины перекрытия, в этот момент может быть открыт и впускной клапан цилиндра #2. В нетвинскрольном коллекторе импульс высокого давления из цилиндра #1, попав в коллектор, сбивает течение потока цилиндра #2 не позволяя ему хорошо продуться в своей начальной стадии впуска. Также при этом, сам поток из цилиндра #1 теряет часть своей энергии.

Пример твинскрольного турбинного хаузинга:

thumb small 58ad32056e54d6a2384d26d9a2e76253‘); w.show();» alt=»divided_turbine.jpg» title=»divided_turbine.jpg»/>

Более эффективное использование энергии выхлопных газов в твинскрольных системах ведет к улучшению отзывчивости турбины на малых оборотах и большей мощности на больших.

Читайте также:  Компрессия двигателя ниссан альмера n15

Степень сжатия турбомоторов.

Основными факторами, вызывающими детонацию являются:

Теперь, когда мы разобрались с общими факторами связанными с детонацией, поговорим о степени сжатия. Степень сжатия (СЖ) определена как:

dbf5b95b7a8c0a2d619d3f9931287e07

СЖ заводских моторов будет разной для атмосферного и турбомотора. Например стоковый мотор Honda S2000 имеет СЖ равную 11.1:1, в то время как турбомотор Subaru WRX имеет СЖ 8.8:1.

Существует много факторов влияющих на максимально допустимую СЖ. Нет одного простого ответа какой она должна быть. В общем случае, СЖ должна быть выбрана максимально возможной для предотвращения детонации, с одной стороны, и обеспечения максимального КПД двигателя, с другой. Факторами влияющими на выбор СЖ в каждом конкретном случае являются: октановое число применяемого топлива, давление наддува, температура воздуха в предполагаемых режимах эксплуатации, форма камеры сгорания, фазы клапанного механизма и противодавление в коллекторе.
Многие современные атмосферные моторы имеют хороший дизайн камеры сгорания и большую стойкость к детонации, что при правильной настройке блока управления позволяет устанавливать на них турбонаддув не меняя заводскую степень сжатия.

Обычной практикой при турбировании атмосферных моторов является увеличение мощности на 60-100% относительно заводской. Тем не менее, для значительных значений наддува требуется уменьшение заводской СЖ.

AFR или соотношение воздух/топливо.

При обсуждении вопроса настройки двигателя, выбраный AFR, наверное, наиболее часто встречающийся вопрос. Правильный AFR имеет крайне высокое влияние на общую производительность и надежность мотора и его компонентов.
AFR определен как соотношение количества воздуха зашедшего в цилиндр к количеству зашедшего в него топлива. Стехиометрическая смесь это смесь при которой происходит полное сгорание топлива. Для бензиновых двигателей стехиометрией является соотношение 14.7:1. Это означает что на каждую часть топлива приходится 14.7 частей воздуха.

Что означают понятия бедная и богатая смесь? Более низкие значения AFR означают меньшее количество воздуха относительно топлива и такая смесь называется богатой. Аналогично, большие значения AFR означают больше воздуха относительно топлива и называются бедной смесью.

Например:
15.0:1 = бедная
14.7:1 = стехиометрическая
13.0:1 = богатая

Реально при настройке существует три способа борьбы с детонацией:
— уменьшение давление наддува
— обогащение смеси
— использование более позднего зажигания.

Задачей настройщика является поиск наилучшего баланса этих трех параметров для получения максимальной отдачи и ресурса турбомотора.

Компрессорные карты

Для начала обозначим и разъясним некоторые термины, с которыми нам придется столкнуться в этой статье:

Понятие абсолютного и относительного давления.

Под абсолютным давлением мы будем понимать давление относительно полного вакуума. Соответственно оно может быть только больше или равным нулю. На Земле на уровне моря оно принято равным одной атмосфере или 1атм.

Под относительным давлением мы будем понимать давление относительно атмосферного. Соответственно оно может быть как положительным так и отрицательным, в зависимости от того больше или меньше оно чем атмосферное.

Составляющие компрессорной карты

Компрессорная карта это график, описывающий конкретные характеристики компрессора в различных режимах его работы. Среди этих характеристик мы разберем: эффективность компрессора, диапазон массового расхода воздуха, возможности работы на разных давлениях наддува, а так же скорость вращения вала турбины.

Ниже приведена типичная компрессорная карта с названиями ее составляющих.

thumb small b31a78e5763546bba3331f58554a6bad‘); w.show();» alt=»3076map.jpg» title=»3076map.jpg»/>

Рассмотрим их по порядку:

По вертикальной оси у нас расположен Pressure Ratio, или соотношение давлений, величина, описываемая как отношение абсолютного давления на выходе из компрессора к абсолютному давлению на его входе:

*Очень грубо говоря эта величина просто показывает во сколько раз компрессор сжал воздух.

Как рассчитать Pressure Ratio: К примеру мы хотим рассмотреть ситуацию работы компрессора при 0.7 атм наддува в коллекторе. Для начала вспомним что наддув это относительное давление, а мы везде оперируем только абсолютным. Поэтому сразу добавляем к нему 1.0 атмосферного давления и дальше имеем в виду что у нас 1.7атм абсолютного давления в коллекторе

. В нашем случае, при нормальном атмосферном давлении на входе в турбину, соотношение давлений будет таким:

PR = Pcr/Pin = 1.7/1.0 = 1.7

Но на самом деле все несколько сложнее. В виду наличия в системе воздушного фильтра давление на входе в компрессор, как правило, несколько меньше атмосферного. В зависимости от размера и качества фильтра оно может быть меньше на 0.02-0.10атм. Допустим у нас оно меньше атмосферного на 0.05атм.

Тогда наша формула приобретет следующий вид:

PR = 1.7/(1.0-0.05) = 1.7 / 0.95 = 1.79

В случае спортивной машины без воздушного фильтра, мы можем принять наш делитель всегда равным единице и просто считать PR = 1 + ДавлениеНаВыходе.

Air Flow или расход воздуха

По горизонтальной оси у нас расположен массовый расход воздуха.

Это величина, показывающая, массу воздуха, проходящую за единицу времени через компрессор и, соответственно, дальше через двигатель. Исторически это величина на компрессорных картах выражается в lb/min или по-русски в фунтах воздуха за минуту времени. Фунт это 0.45кг, а минута это 60 секунд 🙂

Поскольку, как мы уже проходили, мощность двигателя напрямую зависит от количества топливо-воздушной смеси которая проходит через него, массовый расход, это, одна из главных характеристик которую мы можем получить, изучая компрессорную карту. При прохождении через мотор 1 фунта воздуха в минуту, современные моторы вырабатывает в среднем 9-11 лошадиных сил мощности. Соответственно даже беглый взгляд на компрессорную карту может нам сказать, на какую потенциальную мощность мы можем рассчитывать с этой турбиной. На приведенном выше примере, область работы компрессора заканчивается примерно на 52 фунтах, соответственно эту турбину грубо можно сразу оценить на 500лс.

Граница Surge

Граница Surge это крайняя левая линия компрессорной карты. Работа компрессора левее этой границы, т.е. за пределами обозначенной компрессорной картой, связанна с нестабильностью воздушного потока, всплесками и провалами наддува. Длительная работа компрессора в таком режиме приводит к преждевременному выходу его из строя в виду большой переменной нагрузки на подшипники и крыльчатку компрессора.

thumb small f0423526c9ec78e629df6d88f8509670‘); w.show();» alt=»3076Surge.jpg» title=»3076Surge.jpg»/>

Турбина может попасть в режим Surge в одном из двух случаев.

Еще одним способом, помогающим снизить вероятность попадания компрессора в зону Surge является использование компрессорного хаузинга с так называемым Ported Shroud. Фактически это обводные воздушные каналы, встроенные в компрессорный хаузинг:

thumb small bb873f35a748700f0e126438d5ee68d1‘); w.show();» alt=»AntiSurge.jpg» title=»AntiSurge.jpg»/>

Благодаря этим каналам удается сместить границу Surge левее по компрессорной карте, за счет того что часть воздуха может выйти из компрессора назад во впуск. Это позволяет при прочих равных использовать больший компрессор на меньшей турбинной части без возникновения эффекта Surge. Ниже приведено сравнение двух компрессорных карт: с обычным компрессорным хаузингом и со встроенными обводными каналами:

thumb small e7c233f7baea931ec611a14c2209f256‘); w.show();» alt=»AntiSurgeMap.jpg» title=»AntiSurgeMap.jpg»/>

Видно, что есть довольно значительная область карты красного цвета, которая является рабочей для турбины с портированным компрессорным хаузингом, но при этом находится левее границы Surge карты синего цвета, соответствующей обычному хаузингу.

Как это выглядит в реальной жизни? Ниже приведено фото двух турбин 30й серии, первая 3071 без Ported Shroud, вторая 3076 с заводским Ported Shroud

thumb small 3baf20753aec9e15e16112d799801ac3‘); w.show();» alt=»_GT3071R.jpg» title=»_GT3071R.jpg»/>

thumb small f37db30b3916a53745a6357f92c71a69‘); w.show();» alt=»_GT30R.jpg» title=»_GT30R.jpg»/>

Так же бывает возможность доработки заводского компрессорного хаузинга под Ported Shroud, если с завода он не был изготовлен. Например в случае GT3582R это выглядит так:

thumb small 570d0d025367e483488f1021b1382553‘); w.show();» alt=»GT35R.jpg» title=»GT35R.jpg»/>

Посмотрим еще раз на нашу компрессорную карту и рассмотрим последние три составляющих:
Предельная граница эффективности, Зоны эффективности компрессора и Скорость вращения турбины

thumb small b31a78e5763546bba3331f58554a6bad‘); w.show();» alt=»3076map.jpg» title=»3076map.jpg»/>

Предельная граница эффективности компрессора

Как линия Surge ограничивает карту слева, так граница эффективности ограничивает ее справа. Garrett на своих картах указывает область работы компрессора до 60-58% эффективности. Все, что находится правее этой границы, будет иметь эффективность ниже 58% и использование компрессора в этой области теряет смысл. За этим пределом начинается неоправданно большой нагрев сжимаемого компрессором воздуха, а скорость вращения турбины выходит за допускаемые производителем значения.

Зоны эффективности компрессора

Мы видим концентрические замкнутые линии, расходящиеся из центральной области карты. Возле каждой такой линии подписано значение эффективности компрессора внутри области очерченной этой линией. Самая маленькая область в центральной части соответствует максимально возможной эффективности компрессора. По мере удаления от центра мы будем попадать в области все меньшей и меньшей эффективности пока не упремся либо в предел по Surge слева, либо в предел по производительности справа.

Скорость вращения турбины

Линии, обозначенные на карте как скорость вращения турбины, показывают с какой скоростью будет вращаться вал турбины в этой области. Значения выражаются в оборотах вала за минуту времени. С ростом скорости вращения турбины у нас увеличивается давление и/или расход воздуха через компрессор. Как видно, эти линии начинают сходиться в области границы зоны эффективности и, как уже было сказано выше, за пределами этой области скорость вращения турбины быстро увеличивается за пределы допустимого.

На этом мы заканчиваем рассмотрение компрессорной карты и теперь, понимая что на ней изображено, в следующей главе мы перейдем к изучению процесса подбора турбины под конкретный мотор.

По материалам Garrett TurboTech.
Перевод и адаптация Oleg Coupe (TurboGarage)

Источник

Поделиться с друзьями
admin
Ваша безопасность
Adblock
detector