Как найти максимальный момент двигателя

Пусковой момент асинхронного двигателя

main

Пусковым моментом асинхронного двигателя называют вращающий момент, который развивается на валу асинхронного электрического двигателя, когда ротор остается неподвижным, а статор тока установлен в обмотках.
Если в специализированной литературе встречаются термины «начальный момент», «начальный пусковой момент асинхронного двигателя» или «момент трогания», то речь тоже идет о пусковом моменте. Обязательно нужно следить за правильностью выполнения обмоток, причем подразумевается, что частота питающего напряжения, как и само напряжение, будут приближены к номинальному значению. Только в номинальном режиме асинхронный двигатель сможет работать непосредственно так, как задумано инженерами.

Пусковой момент и его численное значение

formula1

Определить пусковой момент асинхронного двигателя можно, используя специальную формулу. Кратность же пускового момента асинхронного двигателя можно найти в паспорте устройства, такой документ обязательно должен предоставляться производителем. С этими данными формулу пускового момента асинхронного двигателя очень просто рассчитать.

В зависимости от модели двигателя меняется величина кратности. Встречаются изделия, в которых этот показатель составляет от 1,5 до 6. При покупке необходимо убедиться, что значение пускового момента больше, чем статический момент планируемой проектной нагрузки на валу. Если, выбирая двигатель, вы обнаружили несоответствие, то такой аппарат не сможет развивать необходимый рабочий момент и выполнять нужную нагрузку. Он просто будет не в состоянии должным образом запуститься, а после и разогнаться до номинальных оборотов. Максимальный пусковой момент асинхронного двигателя должен соответствовать потребностям пользователя.

Для нахождения пускового момента существует и еще одна формула. Ее следует использовать при выполнении теоретических расчетов. Чтобы воспользоваться формулой, необходимо знать показатели номинального оборота и мощности на валу. На шильдике (табличка с данными) устройства указываются все эти параметры. В формуле P2 –номинальная мощность, а F1 – номинальные обороты. Формула выглядит следующим образом:

formula2

Чтобы найти P2, необходимо применить уже отдельную формулу. Здесь пусковой момент асинхронного двигателя зависит от напряжения. Важно учитывать параметры скольжения, пускового тока и напряжения питания. Все эти величины тоже обнаруживаются на шильдике. Расчеты не представляют особой сложности. И формула наглядно показывает, что для увеличения пускового момента асинхронного двигателя можно воспользоваться двумя методиками: повысить питающее напряжение или увеличить стартовый ток.

formula3

Для наглядности предлагаем произвести расчет значений пусковых моментов для трех аппаратов из серии АИР. Воспользоваться нужно самой первой формулой, для которой необходимы величины номинального момента и параметры кратности пускового момента. Результаты вычислений представлены в табличке:

Тип двигателя Номинальный момент, Нм Отношение пускового момента к номинальному моменту Пусковой момент, Нм
АИРМ132М2 36 2,5 90
АИР180S2 72 2 144
АИР180М2 97 2,4 232,8

Какую роль играет пусковой момент

1

Встречаются ситуации, когда двигатели подключают непосредственно к сети, а коммутацию производят за счет обычного магнитного пускателя. Для этого линейное напряжение подается на обмотки, образуется вращающееся магнитное поле статора, за счет чего оборудование начинает работать.

В этом случае не избежать броска тока, который по своей величине превысит номинальный ток в 5-7 раз. И чем мощнее двигатель и выше нагрузка, тем большей будет и длительность такого превышения. Более мощные моторы демонстрируют продолжительный старт, а обмотки статора в них принимают токовую перегрузку дольше.

Двигатели малой мощности, не превышающей 3 кВт, могут с легкостью перенести такие перепады. Сеть тоже вполне достойно справляется с кратковременными бросками мощности, поскольку у сети в любом случае присутствует некий мощностной резерв. Это объясняет, почему мелкие бытовые электроприборы, а также небольшие станки, вентиляторы и насосы подсоединяют напрямую, не беспокоясь о том, что они подвергаются перегрузкам. Обмотки статоров в двигателях маломощного оборудования соединяются «звездой», если расчет идет на 3-фазное напряжение в 380 вольт или «треугольником», когда речь идет о 220 вольтах.

Но если двигатель более мощный, с показателем в 10 и больше кВт, то его недопустимо включать в сеть напрямую. Нужно ограничить бросок тока, иначе можно спровоцировать существенную перегрузку, которая приведет к опасным последствиям.

Пути ограничения пускового тока

2

Самый простой способ убрать лишний пусковой ток заключается в запуске оборудования на пониженном напряжении электродвигателя. Для этого конструкция предусматривает переключение обмотки с «треугольника» на «звезду» непосредственно в момент запуска. Когда же двигатель наберет некоторые обороты, обмотка переключается обратно на «треугольник». Всего несколько секунд требуется для погашения ненужного всплеска и переключения. В устройствах это реализуется за счет реле времени или иных приспособлений.

Если используется это решение, то пусковой момент также понижается. И здесь можно наблюдать квадратичную зависимость: когда напряжение уменьшится в 1,7 раза, то и момент снизится в 3 раза. Именно поэтому пуск на пониженном напряжении можно использовать лишь оборудования, в котором пуск возможен только с минимальной нагрузкой на валу двигателя асинхронного типа. Ярким примером может служить пуск многопильного станка.

Если же речь идет о мощных нагрузках, к примеру, присущих ленточному конвейеру, то указанный выше способ ограничения пускового тока не подходит. Лучше применять реостатный метод. Он дает возможность уменьшить пусковой ток без ущерба для крутящего момента. Именно этот способ можно назвать наиболее подходящим для асинхронных электродвигателей, снабженных фазным ротором. Тут удобно включается реостат в цепь обмотки ротора, а регулировка рабочего тока производится ступенчато, обеспечивая плавный пуск. А за счет реостата можно отрегулировать и рабочую скорость в двигателе, причем это характерно не только для момента запуска.

Самым же эффективным методом для безопасного запуска электродвигателей асинхронного типа можно смело назвать пуск через частотный преобразователь. Показатели напряжения и частоты здесь регулируются самим преобразователем в автоматическом режиме, за счет чего двигатель работает в оптимальных для себя условиях. Так удается достичь стабильности в оборотах, но полностью исключить броски тока.

Читайте также:  Замена масла в двигателе citroen

Источник

Механические и электрические характеристики асинхронных электродвигателей

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных.

Механические характеристики электродвигателя представляют собой зависимость угловой скорости ω от развиваемого им момента на валу, т.е. ω = f (M). Различают естественные и искусственные механические характеристики электродвигателя.

Естественная механическая характеристика соответствует работе электродвигателя с номинальными параметрами при нормальной схеме включения. Искусственная механическая характеристика соответствует работе электродвигателя с параметрами, отличающимися от номинальных, например, при введении сопротивления, изменении питающего напряжения, частоты и др.

1600186216 1

Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся.

1600186639 2

Естественная механическая характеристика асинхронного двигателя

Для примера рассмотрим АИР80В2У3.

1598363290 1

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

1474010867 1

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

1474010838 2

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

1474010852 3

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

1474010826 6

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду.

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.

Угловая скорость асинхронного двигателя

1474010838 8

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

1474010771 9

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

1474010801 15

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Читайте также:  Как чертить в компасе двигатели

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Источник

максимальный момент (Мmах) асинхронной машины, запишите эту формулу?

Что такое расчетная формула момента? Запишите выражение этой формулы и поясните физический смысл еѐ. Что такое

максимальный момент (Мmах) асинхронной машины, запишите эту формулу?

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент М пропорционален электромагнитной мощности:

image001image002

image003двигателя пропорционален мощности электрических потерь в обмотке ротора.

Если значение тока ротора по выражению (3.28) подставить в (3.41), то получим формулу электромагнитного момента асинхронной машины (Н∙м):

image004

Рассмотрим зависимость момента от скольжения М=f(s) при U1 = const, f1=const и постоянных параметрах схемы замещения. Эту зависимость принято называть механической характеристикой асинхронной машины. Анализ выражения (3.42), представляющего собой аналитическое выражение механической характеристики М=f(s), показывает, что при значениях скольжения s=0 и s=¥ электромагнитный момент М=0. Из этого следует, что механическая характеристика М=f(s) имеет максимум. Для определения величины критического скольжения sкр, соответствующего максимальному моменту, необходимо взять первую производную от (3.42) и приравнять ее нулю:

image005image006

. В результате (3.43) Подставив значение критического скольжения (по 3.43) в выражение электромагнитного момента (3.42), после ряда преобразований получим выражение максимального момента (Н∙м):

image007

В (3.43) и (3.44) знак плюс соответствует двигательному, а знак минус — генераторному режиму работы асинхронной машины.

Для асинхронных машин общего назначения активное сопротивление обмотки статора r1 намного меньше суммы индуктивных сопротивлений: r1

image011

Расчетная формула момента показывает, что момент асинхронного двигателя пропорционален потоку и активной составляющей тока ротора.

Запишем известное выражение момента для вывода расчетной формулы используем нижнюю

image012

часть векторной диаграммы асинхронного двигателя

image013

image014

тогда image015,

т.е. момент зависит от потока и активной составляющей тока ротора.

Дата добавления: 2016-05-05 ; просмотров: 5182 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Номинальный, максимальный и пусковой момент асинхронного двигателя. Формула Клосса

Трехфазный асинхронный двигатель с короткозамкнутым ротором, устройство и принцип действия.

Потери напряжения и мощности в трехфазной линии.

Ток нейтрального провода в трехфазной цепи является суммой фазных токов. При симметричной нагрузке сумма фазных токов равняется нулю. Таким образом, при симметричной нагрузке отсутствуют потери в нейтральном проводе. Потери напряжения и мощности в линии при трехфазном подключении в шесть раз меньше, чем при однофазном подключении потребителей такой же мощности.

При несимметричной нагрузке нейтральный провод необходим, по нему должен проходить выравнивающий ток. При несимметрии фазных токов появляется ток в нейтральном проводе. Если попытаться включить несимметричную нагрузку без нейтрального провода, получится перекос фаз, при котором на нагруженных фазах напряжение понизится, а на разгруженных появляется перенапряжение. Снижение напряжения нарушает работу потребителей, а перенапряжение может вывести из строя.

Потери энергии в нейтральном проводе снижают коэффициент полезного действия линии и ухудшается качество электроснабжения. Поэтому с целью получения симметричной нагрузки однофазные потребители стараются равномерно распределять по фазам.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре – размещается трехфазная обмотка, питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Собранный сердечник статора укрепляют в чугунном корпусе двигателя. Вращающуюся часть двигателя – ротор – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам.

Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал вращается в подшипниках, закрепленных в подшипниковых щитах. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.

Рассмотрим характеристику, соответствующую режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Mпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Mкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.

Для построения механической характеристики задаются значениями коэффициента скольжения s и определяют по нему соответствующее значение частоты вращения ротора n, а также момент М по формуле Клосса

image001.

Если в эту формулу подставить вместо M и S номинальные значения момента и скольжения (Mн и Sн), то можно получить соотношение для расчета критического скольжения.

image002.

Участок характеристики, на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Mн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется от Sкр до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

Где kм кратность пускового момента.

image004

Под критическим моментом понимают наивысшее или максимально возможное значение. В случае если момент нагрузки превысит величину критического момента, то двигатель остановится.

Читайте также:  Задняя опора двигателя что это

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Расчет крутящего момента электродвигателя

krutyashiy moment min

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр или в килограмм-силах на метр.

Виды крутящих моментов:

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Двигатель кВт/об Мном, Нм Мпуск, Нм Ммакс, Нм Минн, Нм
АИР56А2 0,18/2730 0,630 1,385 1,385 1,133
АИР56В2 0,25/2700 0,884 1,945 1,945 1,592
АИР56А4 0,12/1350 0,849 1,868 1,868 1,528
АИР56В4 0,18/1350 1,273 2,801 2,801 2,292
АИР63А2 0,37/2730 1,294 2,848 2,848 2,330
АИР63В2 0,55/2730 1,924 4,233 4,233 3,463
АИР63А4 0,25/1320 1,809 3,979 3,979 3,256
АИР63В4 0,37/1320 2,677 5,889 5,889 4,818
АИР63А6 0,18/860 1,999 4,397 4,397 3,198
АИР63В6 0,25/860 2,776 6,108 6,108 4,442
АИР71А2 0,75/2820 2,540 6,604 6,858 4,064
АИР71В2 1,1/2800 3,752 8,254 9,004 6,003
АИР71А4 0,55/1360 3,862 8,883 9,269 6,952
АИР71В4 0,75/1350 5,306 13,264 13,794 12,733
АИР71А6 0,37/900 3,926 8,245 8,637 6,282
АИР71В6 0,55/920 5,709 10,848 12,560 9,135
АИР71В8 0,25/680 3,511 5,618 6,671 4,915
АИР80А2 1,5/2880 4,974 10,943 12,932 8,953
АИР80В2 2,2/2860 7,346 15,427 19,100 13,223
АИР80А4 1,1/1420 7,398 16,275 17,755 12,576
АИР80В4 1,5/1410 10,160 22,351 24,383 17,271
АИР80А6 0,75/920 7,785 16,349 17,128 12,457
АИР80В6 1,1/920 11,418 25,121 26,263 20,553
АИР80А8 0,37/680 5,196 10,393 11,952 7,275
АИР80В8 0,55/680 7,724 15,449 16,221 10,814
АИР90L2 3/2860 10,017 23,040 26,045 17,030
АИР90L4 2,2/1430 14,692 29,385 35,262 29,385
АИР90L6 1,5/940 15,239 30,479 35,051 28,955
АИР90LА8 0,75/700 10,232 15,348 20,464 15,348
АИР90LВ8 1,1/710 14,796 22,194 32,551 22,194
АИР100S2 4/2850 13,404 26,807 32,168 21,446
АИР100L2 5,5/2850 18,430 38,703 44,232 29,488
АИР100S4 3/1410 20,319 40,638 44,702 32,511
АИР100L4 4/1410 27,092 56,894 65,021 43,348
АИР100L6 2,2/940 22,351 42,467 49,172 35,762
АИР100L8 1,5/710 20,176 32,282 40,352 30,264
АИР112М2 7,5/2900 24,698 49,397 54,336 39,517
АИР112М4 5,5/1430 36,731 73,462 91,827 58,769
АИР112МА6 3/950 30,158 60,316 66,347 48,253
АИР112МВ6 4/950 40,211 80,421 88,463 64,337
АИР112МА8 2,2/700 30,014 54,026 66,031 42,020
АИР112МВ8 3/700 40,929 73,671 90,043 57,300
АИР132М2 11/2910 36,100 57,759 79,419 43,320
АИР132S4 7,5/1440 49,740 99,479 124,349 79,583
АИР132М4 11/1450 72,448 173,876 210,100 159,386
АИР132S6 5,5/960 54,714 109,427 120,370 87,542
АИР132М6 7,5/950 75,395 150,789 165,868 120,632
АИР132S8 4/700 54,571 98,229 120,057 76,400
АИР132М8 5,5/700 75,036 135,064 165,079 105,050
АИР160S2 15/2940 48,724 97,449 155,918 2,046
АИР160М2 18,5/2940 60,094 120,187 192,299 2,884
АИР180S2 22/2940 71,463 150,071 250,119 4,288
АИР180М2 30/2940 97,449 214,388 341,071 6,821
АИР200М2 37/2950 119,780 275,493 383,295 16,769
АИР200L2 45/2940 146,173 380,051 584,694 19,003
АИР225М2 55/2955 177,750 408,824 710,998 35,550
АИР250S2 75/2965 241,568 628,078 966,273 84,549
АИР250М2 90/2960 290,372 784,003 1161,486 116,149
АИР280S2 110/2960 354,899 887,247 1171,166 212,939
АИР280М2 132/2964 425,304 1233,381 1488,563 297,713
АИР315S2 160/2977 513,268 1231,844 1693,786 590,259
АИР315М2 200/2978 641,370 1603,425 2116,521 962,055
АИР355SMA2 250/2980 801,174 1281,879 2403,523 2163,171
АИР160S4 15/1460 98,116 186,421 284,538 7,457
АИР160М4 18,5/1460 121,010 229,920 350,930 11,375
АИР180S4 22/1460 143,904 302,199 402,932 15,110
АИР180М2 30/1460 196,233 470,959 588,699 27,276
АИР200М4 37/1460 242,021 532,445 847,072 46,952
АИР200L4 45/1460 294,349 647,568 941,918 66,229
АИР225М4 55/1475 356,102 997,085 1317,576 145,289
АИР250S4 75/1470 487,245 1218,112 1559,184 301,605
АИР250М4 90/1470 584,694 1461,735 1871,020 467,755
АИР280S4 110/1470 714,626 2072,415 2429,728 578,847
АИР280М4 132/1485 848,889 1697,778 2886,222 1612,889
АИР315S4 160/1487 1027,572 2568,931 3802,017 2363,416
АИР315М4 200/1484 1287,062 3217,655 4247,305 3603,774
АИР355SMA4 250/1488 1604,503 3690,356 4492,608 8985,215
АИР355SMВ4 315/1488 2021,673 5054,183 5862,853 12534,375
АИР355SMС4 355/1488 2278,394 5012,466 6151,663 15493,078
АИР160S6 11/970 108,299 205,768 314,067 12,021
АИР160М6 15/970 147,680 339,665 443,041 20,675
АИР180М6 18,5/970 182,139 400,706 546,418 29,324
АИР200М6 22/975 215,487 517,169 711,108 50,209
АИР200L6 30/975 293,846 617,077 881,538 102,846
АИР225М6 37/980 360,561 721,122 1081,684 186,050
АИР250S6 45/986 435,852 784,533 1307,556 440,210
АИР250М6 55/986 532,708 1012,145 1811,207 633,922
АИР280S6 75/985 727,157 1454,315 2326,904 1090,736
АИР280М6 90/985 872,589 1745,178 2792,284 1657,919
АИР315S6 110/987 1064,336 1809,372 2873,708 4044,478
АИР315М6 132/989 1274,621 2166,855 3696,400 5735,794
АИР355МА6 160/993 1538,771 2923,666 3539,174 11848,540
АИР355МВ6 200/993 1923,464 3654,582 4423,968 17118,832
АИР355MLA6 250/993 2404,330 4568,228 5529,960 25485,901
AИР355MLB6 315/992 3032,510 6065,020 7278,024 40029,133
АИР160S8 7,5/730 98,116 156,986 235,479 13,246
АИР160М8 11/730 1007,329 1712,459 2417,589 181,319
АИР180М8 15/730 196,233 333,596 529,829 41,994
АИР200М8 18,5/728 242,685 509,639 606,714 67,952
АИР200L8 22/725 289,793 579,586 724,483 88,966
АИР225М8 30/735 389,796 701,633 1052,449 214,388
АИР250S8 37/738 478,794 861,829 1196,985 481,188
АИР250М8 45/735 584,694 1052,449 1520,204 695,786
АИР280S8 55/735 714,626 1357,789 2143,878 1071,939
АИР280М8 75/735 974,490 1754,082 2728,571 1851,531
АИР315S8 90/740 1161,486 1509,932 2671,419 4413,649
АИР315М8 110/742 1415,768 2265,229 3964,151 6370,957
АИР355SMA8 132/743 1696,635 2714,616 3902,261 12215,774
AИР355SMB8 160/743 2056,528 3496,097 4935,666 18097,443
AИР355MLA8 200/743 2570,659 4627,187 6940,781 26991,925
AИР355MLB8 250/743 4498,654 7647,712 10796,770 58032,638

Расчет крутящего момента – формула

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

formula moment

Расчет онлайн

Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)

тут будет калькулятор

После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»

Источник

Поделиться с друзьями
admin
Ваша безопасность
Adblock
detector